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Introduction 
This memo investigates how birth counts vary across U.S. counties from 2011 to 2020 and 
examines the extent to which these variations can be explained by county-level attributes. This  
includes demographic composition, rural-urban classifications, and socioeconomic indicators. 
Using various statistical methods, this analysis rigorously accounts for heteroscedasticity and 
temporal correlation within counties to ensure robust conclusions. By integrating natality data 
from the CDC with demographic and socioeconomic datasets, this study aims to identify key 
drivers of natality trends and assess disparities across counties. Understanding the factors that 
influence natality patterns across counties over time is crucial for informing public health policies 
and resource allocation. 
 
Methods 
We began by filtering for counties with natality records and reshaping the demographic data to 
align population counts by race, ethnicity, sex, and age. A log transformation was applied to 
stabilize variance, followed by centering to remove mean effects across counties and groups. 
These steps reduced noise, addressed heteroscedasticity, and prepared the data for 
dimensionality reduction via singular value decomposition. To assess demographic complexity, 
we examined the decay of singular values, which revealed approximately 10–12 dominant 
components captured most of the variation, with the remainder following an exponential or 
power-law decline. Biplots of the leading components visualized the main demographic 
gradients across counties, clarifying patterns by age, sex, and ethnicity while highlighting 
county-level outliers. 
 
For modeling natality trends, we merged the birth data with demographic, socioeconomic, and 
geographic covariates. We used log-transformed population as an offset to account for the 
expected scaling between population size and birth counts. We also assessed mean-variance 
relationships to justify modeling overdispersion. Then, we fit generalized estimating equations 
(GEE) with a Gamma family to account for heteroscedasticity and within-county correlation over 
time. Predictors included urbanicity (RUCC), deprivation (ADI), time trends, and interaction 
terms. To further account for demographic structure, we applied principal components 
regression (PCR). After extracting orthogonal components via SVD from the centered 
demographic data, we incrementally added these components to the regression model. This 
allowed us to capture key patterns while avoiding multicollinearity. Finally, score tests were used 
to evaluate how many components significantly improved model fit. 
 
Results 
We first explored the demographic structure of U.S. counties using SVD on age-race-sex 
population data. The singular value spectrum (Figure 1) showed a steep initial drop followed by 
a slower decay, indicating that approximately 10–12 components capture the majority of 
demographic variation. This multiphasic decay pattern is consistent with both exponential and 
power-law behavior, which supports the use of low-rank approximations for dimensionality 



reduction. Biplots of the leading components (Figure 2) revealed major demographic gradients, 
with clear separations by age, race/ethnicity, and sex. Next, we assessed the relationship 
between population size and birth counts. As shown in Figure 3 (left), birth counts scale nearly 
one-to-one with population size on the log scale, justifying the use of log population as an offset 
in regression models. However, variance increased more rapidly than the mean, with a slope of 
roughly 1.88 in the log-log mean-variance plot (Figure 3, right), indicating substantial 
overdispersion. This motivated the use of a Gamma variance model rather than a standard 
Poisson model. 

To evaluate the roles of urbanicity and socioeconomic status, we modeled birth counts using 
GEE with predictors ADI, RUCC, and time. Poisson regressions suggested both ADI and RUCC 
were significant predictors, but RUCC lost significance when accounting for within-county 
clustering. Switching to a Gamma variance structure yielded improved residual behavior (Figure 
4), and model diagnostics confirmed a better fit. Adding a linear time trend revealed a consistent 
decline in natality from 2011 to 2020, particularly in high-deprivation counties. Final model 
estimates with interaction terms (Figure 5) confirmed that time-varying effects were statistically 
meaningful. 

Finally, we applied PCR to quantify the influence of demographic structure on natality. By 
incrementally introducing principal components derived from SVD, we examined how model 
behavior changed with increasing demographic complexity. Figure 6 shows that with 5 
components, the estimated effects across age-race-sex groups were smooth and interpretable. 
However, adding more components—such as 30 and 60—introduced more detail as well as 
greater variability, particularly in smaller subgroups. Score tests (Figure 7) provided formal 
model comparison results. They showed statistically significant gains in model fit up to 60 
components. Beyond that, the improvement plateaued, with the comparison between 60 and 70 
components yielding a non-significant p-value (p = 0.41). This suggests that models with more 
than 60 components may begin to overfit the data. Overall, PCR with approximately 60 
demographic factors strikes a balance between explanatory power and model parsimony. 

Interpretation 
This analysis reveals that demographic structure plays a central role in shaping county-level 
natality trends. The sharp decay in singular values suggests that most demographic variation 
can be captured with a relatively low number of components, indicating strong underlying 
structure across age, race/ethnicity, and sex. The PCR results further support this, showing that 
models with around 60 components strike a balance between detail and stability, capturing 
nuanced effects of specific subgroups. This was particularly evident for younger populations and 
certain racial/ethnic groups on birth counts. These patterns reflect persistent demographic 
gradients in natality that are likely due to broader social, cultural, and economic differences 
across counties. 
 
In addition to demographic factors, we found that socioeconomic disadvantage, as measured by 
ADI, is consistently associated with lower natality rates. This relationship strengthened over 
time, with more deprived counties experiencing sharp declines in birth counts between 2011 and 
2020. Urbanicity, while initially significant, had weaker effects after accounting for within-county 



clustering. This suggests that deprivation may be a more proximate driver. Together, these 
findings highlight both the stability of demographic effects and the growing influence of structural 
inequality on birth outcomes. 
 
Overall, this study underscores the value of combining dimension reduction with robust 
longitudinal modeling to identify the complex drivers of natality. The use of principal components 
enabled us to capture demographic variation without overfitting, while generalized estimating 
equations addressed non-constant variance and temporal dependence. All in all, these methods 
provide a scalable framework for monitoring natality patterns and understanding how shifting 
population structures and socioeconomic conditions shape public health trajectories at the 
county level. 
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Figure 1: Decay of Singular Values: Exponential vs. Power-Law Fit 
 

 
Figure 2: SVD Biplots of County Demographics by Sex 
 



 
Figure 3: Relationship between log population and log births (left), and log mean vs. log 
variance of birth counts (right), supporting offset use and motivating a Gamma model. 
 
 

 
Figure 4: Diagnostic plots comparing Poisson and Gamma mean–variance relationships 
 



 
Figure 5: GEE regression results with Gamma variance and interaction terms 
 

 
Figure 6: Demographic coefficients from PCR with 5, 30, and 60 factors. 
 



 
Figure 7: Score tests comparing PCR models with increasing factors. 


